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Abstract
The results from a series of Monte Carlo simulations are presented for the two-
dimensional Heisenberg model consisting of classical spin vectors arranged
on the vertices of a square lattice in which the spins interact through an
antiferromagnetic exchange interaction, a magnetic surface anisotropy and
the dipolar interaction. The simulations focus on the exchange dominated
regime in which the strength of the exchange interaction is significantly greater
than both the dipolar interaction and the magnetic surface anisotropy. The
results from the simulations show that there exists a range of the magnetic
surface anisotropy parameter values in which the system exhibits a reorientation
transition from a planar antiferromagnetic phase at low temperature to a
perpendicular antiferromagnetic phase at higher temperature. The phase
diagram, obtained from the Monte Carlo calculations, is determined as a
function of both temperature and magnetic surface anisotropy parameter for
a fixed value of the exchange constant. In addition, the low temperature
magnetization data suggests a softening of a spin wave stiffness close to the
phase boundary between the two ordered states.

1. Introduction

Interest in low dimensional magnetic systems has grown considerably in recent years. One
important class of reduced dimensional systems is ultra-thin magnetic films (UTMFs), which
consist of several monolayers of magnetic atoms deposited on a non-magnetic substrate. The
increased scientific interest in these materials is a consequence of advances in film fabrication
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and characterization techniques. In addition to the scientific interest, these materials are also
of potential technological importance in data storage and processing [1]. Of particular interest
in the context of the current work is the use of antiferromagnetic films, which are used in the
construction of spin valves [2].

Another class of reduced dimensional magnetic system of increasing scientific and
technological interest is micromagnetic arrays which consist of high density arrays of
nanomagnetic dots deposited on a non-magnetic substrate. Such systems can be fabricated to
have a wide variety of structures [3, 4] and properties [5] that can be tuned in a continuous
manner to give a variety of phase behaviour.

The results obtained from studies on low dimensional magnetic systems are also relevant
to certain layered compounds that contain weakly interacting planes of magnetic ions. One
important recent example of such compounds is the class of rare-earth superconductors, such as
REBa2Cu3O7−δ (RE = rare earth). Several of these compounds exhibit an antiferromagnetic
ordering of the rare earth ions at low temperature [6]. While experimental determination
of the effective dimensionality of these compounds is difficult they nevertheless exhibit
certain behaviours characteristic of two dimensional magnetic systems close to the Néel
temperature [7–10].

The wide range of phenomena that have been observed or predicted in these low
dimensional magnetic materials arises from the complex interplay between three fundamental
interactions: the exchange interaction, the magnetic surface anisotropy, and the dipolar
interaction. A model that includes these three interactions may be described in terms of
an energy E given by

E = g
∑
i �= j

( �σi · �σ j

r3
i j

− 3
( �σi · �ri j)( �σ j · �ri j)

r5
i j

)
− J

∑
〈i, j〉

�σi · �σ j − κ
∑

i

(σ z
i )2. (1)

The first term denotes the dipolar interaction, the second the exchange interaction and the third
the magnetic surface anisotropy. In this study we treat the spins as classical vectors of fixed
magnitude and hence {�σi} denotes a set of three dimensional vectors of unit magnitude.

The magnetic properties of UTMFs differ significantly from those of bulk materials in
part because the isotropic exchange interaction cannot of itself sustain long-range magnetic
order in these low dimensional materials. Of particular importance is the anisotropic and long
range dipolar interaction, which plays a critical role in determining the magnetic properties
of these materials. In the case of the planar ferromagnet the long range character of the
dipolar interaction gives rise to a non-analytic contribution in the magnetic propagator. This
modifies the spin wave spectra in the planar ferromagnet in the long wavelength limit such
that limq→0 ω(q) ≈ √

q . This modification of the spin wave spectra is sufficient to render
the thermal spin wave fluctuations finite and hence allow for the appearance of long range
magnetic order at finite temperature [11]. The dipolar interaction also plays an important
role in the case of the uniaxial ferromagnetic Ising model, in which the spins are aligned
perpendicular to the surface. In this case the interplay between the short range ferromagnetic
exchange interaction and the long range antiferromagnetic dipolar interaction destabilizes the
ferromagnetic ground state in favour of a striped phase [12–14]. This has been observed
experimentally [16, 15].

The region separating the planar ferromagnetic phase and the uniaxial striped phase is
determined by the asymmetry between the in-plane and out-of-plane spin alignment that arises
from the combined effect of the magnetic surface anisotropy and the dipolar interaction. The
analysis of this region is complicated by the inhomogeneous character of the striped phase and
the complexities that arise from the dipolar interaction. Analytical and simulation studies do
however show that the temperature dependent renormalization of these interactions, due to the
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Figure 1. Definition of the angle φ characterizing the ground state spin configurations for the pure
dipolar system.

thermal spin fluctuations, can give rise to a reorientation transition whereby the magnetization
axis switches from in-plane to out-of-plane with changing temperature [17–20]5.

While ferromagnetic (J > 0) UTMFs have been studied extensively, less work has been
done on antiferromagnetic (J < 0) UTMFs. However, the complex interplay between the
exchange, magnetic surface anisotropy and dipolar interaction appears to provide an equally
fascinating range of phenomena in the antiferromagnetic case.

In the case of the pure dipolar system (J = 0, κ = 0) the ground state for the square
lattice is a planar antiferromagnetic state. Surprisingly, despite the anisotropic character of the
dipolar interaction, the ground state of the square lattice is continuously degenerate [21, 22],
a fact that had been noted earlier for the honeycomb lattice [23]. The spin configurations that
comprise this ground state manifold are described in terms of a magnetic sublattice consisting
of four lattice sites, with the spin at each lattice site oriented as shown in figure 1 [21]. Each
ground state is characterized in terms of the angle φ. This degeneracy gives rise to a gapless
mode in the spin wave spectra at zero temperature.

While the ground state energy is continuously degenerate the excitation spectra depend on
the angle φ that characterizes the ground state spin configuration. This implies that the entropy
and hence the free energy are not continuously degenerate, but instead manifest the fourfold
symmetry of the underlying lattice. In the case of the pure dipolar system the fluctuations are
such that the minima in the free energy have the spins aligned parallel to the lattice vectors [21].
This state is referred to as the AF1 state [24] or the columnar state [25]. This mechanism
that stabilizes the formation of long range antiferromagnetic order at finite temperature is an
example of the phenomenon known as ‘order from disorder’ [26].

Extending the pure dipolar model to include the isotropic exchange interaction does
not lift the degeneracy of the dipolar ground state spin configurations and, in the case of
an antiferromagnetic exchange interaction (J < 0), the continuously degenerate manifold
of dipolar ground state spin configurations continues to define the ground state manifold
for |J | < 1.23g [24]. Monte Carlo simulations, however, show that the antiferromagnetic

5 A sequence of two papers predicted that for low values of the ratio J/g the sequence of transitions would be from
a perpendicular striped phase to planar ferromagnetic phase [20]. However, the sampling used in these calculations
gave rise to a temperature dependent perpendicular anisotropy that affected the sequence of states observed at the
reorientation transition.
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Figure 2. The J T phase diagram in the absence of the magnetic surface anisotropy κ = 0 from [24].

interaction does modify the character of the spin fluctuations such that the angle φ that
characterizes the equilibrium spin configuration, switches from φ = 0 to π/4 at |J | ≈ 0.7g.
This state is referred to as the AF2 state [24] or the microvortex state [25]. Originally it was
postulated that this switch arose as a consequence of isolated spins being aligned perpendicular
to the plane [24]. However, a similar dependence of the equilibrium spin configuration on the
strength of the exchange constant has also been observed in simulations and linearized spin
wave calculations for the planar X–Y model in which the spins are constrained to lie in the
plane [27, 25].

For |J | > 1.23g the ground state is given by the antiferromagnetic phase in which the
spins are aligned perpendicular to the plane with each spin antiparallel to each of its nearest
neighbours. We refer to this as the perpendicular phase. Simulations reveal that the phase
boundary separating the planar AF2 phase and the perpendicular phase is almost independent
of temperature and hence, while the transition is first order, the latent heat associated with the
transition is extremely small [24]. The J T phase diagram for J < 0 and κ = 0 from [24] is
shown in figure (2).

In this paper we present results from simulations which examine the interplay of
the magnetic surface anisotropy and the dipolar anisotropy in the exchange dominated
antiferromagnetic phase (|J | > 1.23g). In particular we present the κT phase diagram for
κ � 0 and J = −10g. Of particular note is the prediction of a reorientation transition from the
planar antiferromagnetic phase to the perpendicular antiferromagnetic phase with increasing
temperature.

Results are reported for a several lattices sizes in the range N = 32 × 32 to 104 × 104.
Periodic boundary conditions are imposed on the spin configurations by constructing an infinite
plane from replicas of a finite system. The summations of the dipolar interactions over the
replicas is evaluated using the Ewald summation technique. The simulations are carried out
using the standard Metropolis algorithm. For the results reported in the current work an
equilibration time of 1×104 Monte Carlo steps/site (MCS/site) was used for each simulation,
while the averaging was performed using samples taken every 10 MCS/site. The number of
samples used to calculate the averages, however, depended on both the size of the system and
the temperature. Therefore, our simulations are applied over a range from 10 × 104 MCS/site
at high temperatures for the 104 × 104 system, to 29 × 104 MCS/site at low temperatures for
the 32 × 32 system.
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The layout of the paper is as follows. In the following section we define the order
parameters for the perpendicular and planar phases of interest and present the results obtained
from simulations. These results include the temperature dependence of the order parameters,
the heat capacity and the energy, for J = −10g and three values of κ . The data for κ = −4.10g
are shown to exhibit a reorientation transition from the planar antiferromagnetic phase to the
perpendicular antiferromagnetic phase with increasing temperature. The κT phase diagram for
J = −10g, constructed from the results from the Monte Carlo simulations, is presented and it
is shown that the coexistence line separating the planar and the perpendicular phases satisfies an
important thermodynamic relationship, analogous to the Clausius–Clapyron relation in fluids.
An analysis of the low temperature magnetization is then presented, which suggests a softening
of the spin wave spectra in the long wavelength limit close to the reorientation transition. We
close the paper by summarizing the results and discussing their significance.

2. Magnetic properties

From figure 2 we see that, in the absence of the magnetic surface anisotropy, κ = 0, and
choosing J = −10g the ground state is the perpendicular antiferromagnetic state in which
each spin is aligned perpendicular to the surface and antiparallel to each of its four nearest
neighbours. We refer to this as the perpendicular antiferromagnetic phase. If we include a
finite magnetic surface anisotropy, then the energy of this ground state spin configuration (E⊥)
is given by [28]

E⊥ = −2.6459g + 2J − κ. (2)

If the magnetic surface anisotropy is such that it favours an in-plane orientation of the spins
(κ < 0) then the ground state energy of the perpendicular antiferromagnetic phase increases
as the strength of the magnetic surface anisotropy increases. At some critical value, which we
denote by −κ0, the perpendicular antiferromagnetic ground state will become unstable with
respect to the planar antiferromagnetic phase, in which each spin is aligned parallel to the
surface and antiparallel to each of its four nearest neighbours. The ground state energy of the
planar antiferromagnetic phase (E‖) is given by [28]

E‖ = 1.3229g + 2J. (3)

Since the transition from the perpendicular to the planar antiferromagnetic phase occurs at
T = 0 when

E⊥ = E‖, (4)

we obtain a value of κ0 given by

κ0 = (2.646 + 1.323)g

= 3.969g. (5)

To construct order parameters for these states we divide the lattice into four magnetic
sublattices as described in the [24, 27]. Each magnetic sublattice is square with a lattice
spacing twice that of the original lattice. The unit cell of the magnetic sublattice therefore
contains four sites per unit cell, each site corresponding to one of the sublattices, which we
denote by α ∈ {1 · · · 4}, as shown in figure 1. The sublattice magnetizations �Mα

⊥ and �Mα
‖ are

then defined as

�Mα
⊥ = 4

N

∑
�rα

σ z( �rα)ẑ (6)
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Figure 3. A plot of the two order parameters, M⊥ and M‖ , as a function of both increasing and
decreasing temperature for (a) κ = −1.5g and (b) κ = −7.0g for L = 104.

and

�Mα
‖ = 4

N

(∑
�rα

σ x( �rα)

)
x̂ +

4

N

(∑
�rα

σ y( �rα)

)
ŷ (7)

from which we define the order parameters M⊥ and M‖ as

M⊥ = 1
4

4∑
α=1

| �Mα
⊥| (8)

M‖ = 1
4 |(M1

x + M4
x − M3

x − M2
x )x̂ + (M1

y + M4
y − M3

y − M2
y )ŷ|. (9)

For the ground state of the perpendicular antiferromagnetic phase (|κ | < κ0) we have

M⊥ = 1

M‖ = 0

while for the ground state of the planar antiferromagnetic phase (|κ | > κ0) we have

M⊥ = 0

M‖ = 1.

The finite temperature order parameters are defined by the thermal averages of M⊥ and
M‖ defined by equations (8) and (9) respectively. The temperature dependence of each of the
two order parameters is shown in figures 3(a) and (b) as a function of both increasing and
decreasing temperature for κ = −1.5g and κ = −7.0g.

These two graphs show an antiferromagnetic ordered state at low temperature,a disordered
state at higher temperature, and a continuous transition between them. For κ = −1.5g the
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Figure 4. A plot of the heat capacity per spin as a function of both increasing and decreasing
temperature for (a) κ = −1.5g and (b) κ = −7.0g for L = 104.

ground state is the perpendicular antiferromagnetic state. As the temperature is increased,
figure 3(a) shows the perpendicular order parameter M⊥ decreasing continuously, dropping
rapidly to zero at around TN = (8.40 ± 0.05)g, while the planar order parameter M‖ remains
effectively zero. In contrast, for κ = −7.0g the ground state is the planar antiferromagnetic
state. As the temperature is increased, figure 3(b) shows the planar order parameter M‖
decreasing continuously with increasing temperature, dropping rapidly to zero at around
TN = (6.80 ± 0.05)g, while the perpendicular order parameter, M⊥ remains effectively zero.

The existence of a continuous transition between the antiferromagnetic ordered state and
the disordered state for both κ/g = −1.5 and κ/g = −7.0 is consistent with the absence of
hysteresis in the two order parameters shown in figure 3. This is also in agreement with the
data shown in figure 4 where the heat capacity of the system is plotted as a function of both
increasing and decreasing temperature for κ/g = −1.5 (a) and for κ/g = −7.0 (b). The
behaviour of the two order parameters and the heat capacity with temperature for κ/g = −1.5
and κ/g = −7.0 suggests that the system exhibits a second order transition between the
perpendicular antiferromagnetic ordered state and the disordered state for low values of |κ |
(|κ | < κ0), and a second order transition between the planar antiferromagnetic ordered state
and the disordered state for large values of |κ | (|κ | > κ0).

The differences between magnetization and specific heat curves shown in figures 3 and 4
for the perpendicular phase |κ/g| = 1.5 and the planar phase |κ/g| = 7.0 in the vicinity of
the transition to the paramagnetic phase merit further investigation. Some preliminary work
evaluating the critical exponents for both the planar and perpendicular phases has been done;
however, more detailed studies are required in order to determine the precise nature of the
transition to the paramagnetic phase in each case.

The temperature dependence for the two order parameters M‖ and M⊥ are plotted as a
function of temperature for κ = −4.1g. At T = 0 the system is in the planar phase with
M‖ = 1 and M⊥ = 0. As the temperature is increased the data show that M‖ decreases while
M⊥ remains effectively zero until TR ≈ (1.42 ± 0.02)g, at which point the order parameters
change over a very narrow temperature range with M‖ dropping effectively to zero while M⊥
increases to approximately 0.9. As the temperature is increased further, the system exhibits a
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Figure 5. A plot of (a) the two order parameters, M⊥ and M‖ , and (b) the heat capacity per spin
as a function of both increasing and decreasing temperature for κ = −4.1g with L = 104.

continuous transition to the paramagnetic phase at TN = (7.05 ± 0.05)g. A similar behaviour
is observed on cooling except that the abrupt change in the order parameter occurs at the
slightly lower temperature TR = (1.16 ± 0.02)g. The hysteresis at the transition is shown
in more detail in figure 6, which shows the temperature dependence of the order parameters
and the internal energy as a function of both increasing and decreasing temperature, in the
vicinity of the reorientation transition. The change in the order parameters that occurs over a
narrow range in temperature and which is observed in both heating and cooling corresponds
to a reorientation transition.

This sequence of transitions is also reflected in the heat capacity data shown in figure 5(b),
which shows three distinct peaks. The two narrow peaks correspond to the reorientation
transition on heating and cooling, while the second broad peak corresponds to the transition
from the perpendicular phase to the paramagnetic phase. This hysteresis, together with the
almost discontinuous change in the order parameters and the very narrow peaks in the heat
capacity, is consistent with a reorientation transition that is first order.

Further evidence regarding the nature of the reorientation transition is obtained from the
xy conjugate field Pxy and the z conjugate field Pz defined as [24]

P(T )xy = 1

N

〈∑
�R

(σ 4
x + σ 4

y )

〉
(10)

P(T )z = 1

N

〈∑
�R

σ 2
z

〉
. (11)

It can be readily shown that at zero temperature Pxy = 1 and Pz = 0 for the planar phase, and
Pxy = 0 and Pz = 1 for perpendicular phase, while in the disordered phase Pxy = 2/5 and
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Figure 7. A plot of the two fields conjugate, Pxy and Pz , as a function of both increasing and
decreasing temperature for κ = −4.1g with L = 104.

Pz = 1/3. The temperature dependence of the two conjugate fields Pxy and Pz is shown in
figure 7 for both increasing and decreasing temperature. Both exhibit an abrupt change over a
very narrow range in temperature at the reorientation transition. At higher temperatures, Pxy

extrapolates to 2/5 and Pz extrapolates to 1/3, indicating that the system is in the disordered
phase at high temperature.

It is interesting to contrast the reorientation transition reported in this work for
antiferromagnetic systems with that reported in the ferromagnetic case. While the complexities
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Figure 8. The phase diagram for the dipolar antiferromagnetic Heisenberg system with magnetic
surface anisotropy as a function of |κ|/g and T/g for J = −10g. Region I is the perpendicular
antiferromagnetic phase, region II is the planar antiferromagnetic phase, and region III is the
paramagnetic phase. The dashed line indicates first order transitions between the two ordered
phases, while the two solid lines indicate second order transitions between the two ordered states
and the disordered state.

arising from the inhomogenous striped phase have been noted, another important difference
lies in the fact that the sequence of transitions for the ferromagnetic reorientation transitions is
from a perpendicular phase at low temperature to a planar phase at high temperature [17, 18].
This contrasts with the results reported here, in which the sequence of transitions is from the
planar phase at low temperature to the perpendicular phase at high temperature. However,
the fact that the low temperature phase in both the ferromagnetic and the antiferromagnetic is
stabilized by the magnetic surface anisotropy suggests that there are similarities between the
two reorientation transitions that are not immediately apparent. At the most basic level both
transitions may be understood qualitatively as a weakening of the strength of the magnetic
surface anisotropy, relative to the dipolar interaction, by the thermal fluctuations.

3. The phase diagram

In figure 8, the results of the Monte Carlo simulations at finite temperature have been collected
to form a phase diagram for both heating and cooling. This phase diagram shows three
phase boundaries separating the perpendicular antiferromagnetic phase (region I), the planar
antiferromagnetic phase (region II) and the paramagnetic phase (region III). The two solid
lines indicate second order transitions between the two antiferromagnetic ordered states
and the disordered state, while the dashed line is the phase boundary separating the two
antiferromagnetic ordered phases.

If we assume, as the Monte Carlo data suggest, that the reorientation transition is indeed
first order, and describe the coexistence line separating the perpendicular and the planar phases
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Figure 9. A plot of (a) the average internal energy per spin and (b) the average magnetic
surface anisotropy energy per spin for |κ| = 4.2g as a function of both increasing and decreasing
temperature with L = 104.

by the function κR(T ), then the sequence of states observed at the transition on heating and
cooling is determined by the fact that dκR/dT > 0. The slope of the coexistence can be
expressed as

dκR

dT
= κ�

TR	Eκ

(12)

where � denotes the latent heat of the transition and 	Eκ denotes the difference in the average
anisotropy energy between the two equilibrium phases on the coexistence line. Figures 9(a)
and (b) show how the total average internal energy (figure 9(a)) and the average anisotropy
energy (figure 9(b)) change with increasing and decreasing temperature for κ/g = −4.2. From
these data we estimate TR/g = 2.25±0.02, �/g = 0.142±0.003, and 	Eκ/g = 2.28±0.04,
which yields dκR/dT = 0.116 ± 0.013 according to equation (12). By comparison, for
κ/g = −4.2 estimates of κR from the coexistence line yield a slope dκR/dT = 0.128 ± 0.006.
This provides an useful consistency check on the results obtained from the simulations, in
particular the slope of the coexistence line and hence the nature of the reorientation transition.

4. The temperature dependence of the order parameters in the limit T → 0

The temperature dependence of the order parameters M⊥ and M‖ is shown in figures 10(a)
and (b), for the range 0 < T/g < 1.5 for several values of κ . The data show two interesting
features. Firstly the order appears to decrease linearly with temperature, as one would expect
on the basis of linearized spin wave theory, and secondly the magnitude of the slope |dM/dT |
increases as the reorientation transition is approached, for both the perpendicular and the planar
phase, suggesting a softening of the spin wave spectra close to the transition.

Figure 11 shows a comparison between the slope limT →0 |dM⊥/dT | as a function of κ

for both |κ | < κ0 and |κ | > κ0, obtained from the data shown in figure 10. Also shown in
figure 11 is the phenomenological relationship

lim
T →0

∣∣∣∣dM

dT

∣∣∣∣ = a

|b − (|κ |/g)c|d , (13)
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where the coefficients a, b, c and d are determined by a separate regression analysis for |κ | < κ0

and |κ | > κ0. For |κ | < κ0 the regression analysis yields the following estimates: a = 0.0417,
b = 3.2553, c = 0.7975 and d = 0.2762. This relationship predicts that the slope of the
M⊥ order parameter diverges at |κ |/g = 4.3930, which lies just above κ0. For |κ | > κ0, the
regression analysis yields the following estimates: a = 0.0498, b = 1.7385, c = 0.4385
and d = 0.1293. This relation predicts that the slope of the M‖ order parameter diverges at
|κ |/g = 3.5296, which lies just below κ0.

While the data reported here are all for L = 104, a comparison of the results obtained for
smaller systems (L = 64, 32) shows that the results are insensitive to the size of the system.
This suggests that the singular nature of the phenomenological relation given in equation (13)
is not an artefact of the finite size of the system. It would be useful therefore to compare
the results reported in this study with the low temperature magnetization calculated from spin
wave theory for both the perpendicular and planar phases. The results from such a calculation
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might also provide some useful insight into the mechanism driving the reorientation transition
in these systems.

5. Conclusion

The results from a series of Monte Carlo simulations of the classical Heisenberg model
on a square lattice were presented, in which the energy for a given spin configuration was
given by the sum of an antiferromagnetic exchange interaction, the dipolar interaction and the
magnetic surface anisotropy. Choosing J = −10g, the relevant states are antiferromagnetic in
which every spin is aligned in the opposite direction to its neighbours. The orientation of the
antiferromagnetic state is determined by the strength of the dipolar interaction, which favours
the perpendicular antiferromagnetic phase, and the magnetic surface anisotropy, which, for
κ < 0, favours the planar antiferromagnetic state.

Simulations for small values of |κ | show a finite perpendicular antiferromagnetic order
parameter which decreases with increasing temperature until the system undergoes a second
order phase transition to the paramagnetic phase at the Néel temperature, at which point the
order parameter is effectively zero. A similar behaviour is observed for large values of |κ |,
with the difference that the ordered phase is the planar phase.

For intermediate values of κ there exists a narrow range around |κ | ≈ κ0 for which the
system undergoes a reorientation transition from the planar to the perpendicular phase with
increasing temperature. The almost discontinuous change in the order parameters, the very
narrow peak in the specific heat, and the hysteresis observed in the Monte Carlo data at the
reorientation transition all indicate that it is a first order transition. As the temperature is further
increased the system undergoes a second order transition to the paramagnetic phase. These
results are summarized in the phase diagram presented in figure 8.

While the sequence of phases observed in the reorientation transition in the
antiferromagnetic case is the opposite to that observed for the ferromagnetic case, both may
be qualitatively understood as a reduction in the strength of the magnetic surface anisotropy
relative to the dipolar interaction, due to the thermal fluctuations.

It was also noted that, despite the apparent first order nature of the reorientation transition,
the low temperature magnetization reveals a softening of the spin wave spectra close to the
transition.

While the prediction of the reorientation transition in antiferromagnetic thin films is
perhaps the most interesting result to emerge from these studies, the results presented in this
paper together with the results presented in [24] and [27, 25] provide a fairly comprehensive
picture of the magnetic phase behaviour of antiferromagnetic films.
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